If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-18x-20=48
We move all terms to the left:
2x^2-18x-20-(48)=0
We add all the numbers together, and all the variables
2x^2-18x-68=0
a = 2; b = -18; c = -68;
Δ = b2-4ac
Δ = -182-4·2·(-68)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{217}}{2*2}=\frac{18-2\sqrt{217}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{217}}{2*2}=\frac{18+2\sqrt{217}}{4} $
| 15y+6+-y=2y+-6 | | 16=6(x+2) | | 16=(10x-4) | | 2,5^2x-1=1 | | √3^x=27 | | 150=2xx= | | x+4=x+1+4x-4 | | 8^x-1=4^2x+3 | | 10x-7=4x+x+6 | | ((2x^2-8x)/(4(x^2-4x+4))+1/2=0 | | 25x^2+20x=140 | | 6(y-2)=5y+3 | | 19/6y=14 | | X/9x/12=1/108 | | 3z+2/4=3z-7 | | (-9/(2x^2))+9=0 | | 5/3(2y-1)=(3y-5) | | (a+19)100=100 | | 1.8=76-0.1y | | 4x+2=2x-2+(4x-2) | | 3x=0.3=7.8 | | 19a(19+19)=19 | | 4x+6/3=8 | | 10(10a+10)=10 | | 9(10+z)=9 | | 10c+9=99 | | 4x+2=2x-2+4x-2 | | 10a+9=9 | | 25c+10=0 | | 5k-2=6k+5 | | 5p-7=10 | | 4935x=168 |